
What makes a Code Review Trustworthy?

Stacy Nelson† and Johann Schumann‡

†Nelson Consulting Company, NelsonConsult@aol.com

‡RIACS / NASA Ames, schumann@email.arc.nasa.gov

Abstract

Code review is an important step during the process of certifying safety-
critical software because only code that passes review can be implemented.
Reviews are performed by review boards composed of highly skilled and
experienced computer scientists, engineers and analysts who generally rely
upon a checklist of properties ranging from high-level requirements to
minute language details. While many checklists and coding standards ex-
ist, the actual decision of which properties are most important is generally
based on the experience of the person in charge.

This paper addresses the questions: How can code review ensure certifi-
cation of trustworthy code? and Is code review trustworthy? We surveyed
technical leaders at NASA and the Aerospace industry to find out which
properties are most important during the code review. To make analyze
easier, the most common properties have been classified along different
”views”, ranging from a standards-oriented view (defined as the properties
needed to satisfy a specific standard) to a tool-oriented view.

In this paper, we present this classification together with a summary
of findings and feed-back from the survey. We also discuss how a more
uniform view on properties of code review and tool capabilities can result
in increased trust for safety-critical software.

1 Introduction

Code review is an important step during the process of certifying safety-critical

software. During this step, the code is manually (or automatically) inspected

for a number of weaknesses and properties. The code only passes the review

if it exhibits all required properties. These properties span a wide spectrum

1



ranging from high-level requirements like ”Are all software changes documented?”

to nitty-gritty language details like the correct and safe use of parenthesis in C

preprocessor macros.

Already in 1976, Fagan [Fag76] described design and software walk-throughs

which were carried out at IBM. Since then, a rich body of checklists, coding stan-

dards, and literature about this topic has been published. Despite the existing

lists of properties, the actual decision of which properties are most important is

usually based on the experience of the person in charge. In this paper, we address

the question how code review can contribute to certification of trustworthy code.

We made a survey within NASA and the Aerospace industry regarding which

of the properties are most important during the code review, and if there exists a

subset of properties, that, when fulfilled, the code is considered to be trustworthy.

For a better presentation, we have developed a classification of the most com-

mon properties along different ”views”, for example, a standards-oriented view

(defined as the properties needed to satisfy a specific standard like IEEE 12207,

MIL STD 498, or DO-178B) or a tool-oriented view (”Does the code pass auto-

mated inspection by a respected tool?”).

Why is trustworthiness of the code review important? Both NASA and the

FAA rely upon results of review boards to detect and report errors. Code can

only be implemented when the review board determines that the margin of er-

ror falls within an acceptable range. For safety-critical software this can mean

zero-defects. Review boards are generally comprised of senior computer scien-

tists, engineers and analysts with a reputation for excellence. During the review

their primary concerns include correctness of the code with respect to the soft-

ware requirements, correctness/robustness of the software architecture and con-

formance to applicable coding standards [DO-178B]. The team being reviewed

must demonstrate their technical competence by answering tough questions about

their code. Much of the review process relies upon the reviewer’s ability to trust

that the solution will work.

2



The paper proceeds as follows. In Section 2, we will motivate and introduce

a classification of properties for code review according to different “views”. We

then will discuss some of the more important views in detail (Section 2). Section 4

and 5 presents a survey within NASA and the Aerospace and discusses findings

and feed-back from the survey. In Section 6, we discuss future work and conclude.

2 Views on Code Review

2.1 Overview

When a program or a piece of code is subject to a code review, usually a team

of experts has a close look at the source code and all other related artifacts that

are generated during the software development process (e.g., documentation, log

files). Where applicable, tools are used to support this process. Based upon

the findings, the code review team makes recommendations about code improve-

ments or required changes, or it concludes that the code successfully passed the

review. In principle, there is a huge number of of different aspects and properties

which could be inspected during a code review. These properties can range from

high-level (managerial) aspects, like “Have all change-requests documented ap-

propriately?” to details in the source code, like the correct use of parentheses in

C-preprocessor macros. It is obvious that this list is open-ended. Thus, in real-

ity, never all properties can be checked. Rather, the members of the code-review

team decide on a subset of checks which then actually will be carried out.

This process of property selection, however, is often quite arbitrary and

strongly depends on the expertise and experience of the person(s) doing code

review. In some cases, code review has to be performed along the lines of given

“check-lists” (sometimes being part of a software process) and anecdotal evidence.

Only very few approaches are based upon statistically solid data (e.g., [RBB02]).

Thus the question arises: Is code review trustworthy? Or only, if you can just

trust the expertise of the reviewer? In order to have a more objective metrics

3



on the quality of a code review, there should be a “good” list of properties to be

checked during a good review for trustworthy code. It should be mentioned, how-

ever, that this does not imply that the code is trustworthy, just because it passed

a good code review. Only in combination with other verification and validation

(V&V) techniques, code review can lead to the desired results.

From the above discussion, it is obvious, that for any realistic code review,

not all possible properties can be reviewed and checked. In order to facilitate the

selection of the essential checks, we define each property within a metric spanned

by importance and difficulty . Difficulty indicates, how much effort needs to be

spent to perform the review item under consideration. For example, the property

“Compiles without warnings” can be checked easily and in relatively short time,

whereas an accurate check on pointer arithmetic can be very difficult and time-

consuming.

The notion of “importance” is more difficult to define, because it involves

various aspects, like risk and frequency of occurrences. For example, the check

for a concise documentation layout is definitely important, and violations will

occur frequently. However, there is no immediate risk of an imminent major

program failure. On the other hand, an array-bounds violation is found much less

frequent, but if there is one, consequences can be devastating. A typical example

of such a failure are security vulnerabilities due to buffer overflow [Neu95].

Therefore, we use a metric which is common in traditional risk analysis,

namely that of frequency and risk (or cost in case of failure). There, the space is

divided into four quadrants, along the lines low risk, high risk, and low frequency

vs. high frequency incidents. When we combine the metrics, we obtain a diagram

as shown in Figure 1. Here the axes are labeled according to “difficulty” and

“frequency/risk” and the location of several properties is shown. Often, code

reviewers are taught to find errors effectively, so “it is prudent to condition them

to seek the high-occurrence, high-cost error types” [Fag76].

There is yet another dimension in this problem, namely that of coverage.

4



Figure 1: Metrics for Code Review Properties.

Although it is clear that even in the hypothetical case that all conceivable code

review tasks are performed, the program is not necessarily 100% correct. So,

for example, a review of the requirements or tests with actual data are not part

of a code review. Nevertheless, a good and trustworthy code review has to be

based on a list of properties which, combined, provide “good coverage”. With

this coverage we do not only mean the percentage of source lines (and lines

of documentation) which is being reviewed, but also that a broad variety of

different issues are investigated. For example, a code review, solely focusing on

array-bound violations is most certainly not sufficient, even if all source lines

are investigated. A much better coverage can, for example, be obtained, when

variable initialization, array-bounds, and parameter handling are checked at the

most important ”hot spots”.

In order to cover these issues, we looked at the various approaches to the

source-code analysis required for V&V or certification as it is found in the litera-

ture. Often, these approaches focus on certain aspects (e.g., following a standard,

analyzing C++ code). We identified six different “views” on code review that are

5



representative of the most commonly documented approaches. In the following,

we briefly characterize these views. An in-depth discussion of some of these views

is following in Section 3.

2.2 The Views

Process/standards-oriented View. This view describes properties about

concurrence of applicable standards (i.e., IEEE, RTCA DO-178B, etc.) and pro-

cesses. A typical standards related property in this category could be “Has the

SDD been implemented correctly with respect to the given standard?”. An ex-

ample more on the process-oriented side would be a property like “code must

compile without producing error or warning messages”.

This view can be further subdivided into a phase-product-oriented view which

splits up the relevant properties according to the artifacts and the phases of the

software life-cycle during which they are generated or modified. Products have

the following four categories:

Documentation relates to sufficient documentation in accordance with appli-

cable standards, as well as adequate comments in code.

Code considers whether code compiles cleanly without warnings and also con-

siders whether the code adheres to coding standards.

Software revisions judges whether revisions are documented appropriately in-

cluding rationale and approval for revision.

Maintainability/Reuse relates to using good coding techniques for easily de-

cipherable code and competent configuration management techniques to

ensure that source and object code are always synchronized.

For each of these categories and for each phase, specific properties should be

fulfilled. For example, typical properties for the phase ”Implementation” could

be: ”Does it compile?” (code), ”Are enough comments in the code?” (documen-

tation), ”Are all versions of the implemented code stored/documented carefully?”

6



(revisions), and ”Are sufficient provisions in the implementation for code main-

tenance or re-use?” (maintainability).

A slightly different approach to classification of important properties along

the different phases of the Software Life Cycle is proposed in [WPI95] and is re-

ferred to as a QA-oriented view (Quality Assurance view). A number of abstract

properties like “completeness”, “consistency”, “correctness” etc., are identified.

Then, for each phase and each kind of review, a detailed and tailored definition

of the property is provided. In the standards [IEEE610] and [SOF90], these ab-

stract properties are called quality attributes. For example (from [WPI95], B.2.1),

the ”robustness” property applies to software requirements, software design and

code review phases, but it is defined differently for each phase. For the Software

Requirements Review, ”robustness” means ”are there requirements for fault tol-

erance and graceful degradation?”. The ”robustness” property for the Software

Design Review means ”are all SRS requirements related to fault tolerance and

graceful degradation addressed in the design?”. Finally, ”robustness” during

source code review means ”does the code protect against detectable run-time er-

rors (e.g., range array index values)?”. The QA view will be discussed in more

detail in Section 3.1.

Programming-language Specific View. Most check-lists for source code

analysis (e.g. [Mar91, Bal92, Sho00]) describe properties which are (very) specif-

ically tailored toward a selected programming language. Usually, these lists are

structured according to the syntactic elements of the programming language (dec-

larations, initialization, assignment, flow control, etc). Most of these lists provide

great detail about specific language constructs that are particularly error-prone

and thus require special care during code review. These lists provide the most

extensive view on individual properties that can be automatically checked. On

the other hand, because of their size, such lists are usually of limited use, unless

a very experienced person can select a subset of the most important properties.

7



A more detailed description of that view will be presented in Section 3.2.

Application/Generic View. This view distinguishes between two different

kinds of properties: generic or language specific properties as discussed above,

and domain or application specific properties. For example, the property ”are

all array indices within the correct range?” clearly belongs to the first category.

Consistency of physical units (e.g., ”are all lengths measured in meters?”) be-

longs to the second category. The Mars Climate Orbiter (MCO) incident is a

typical example for such a violated property: different development teams for

that space-probe used different units (the metric versus the English). Due to

this discrepancy, the MCO probe was lost. Another example, which shows up

regularly is a mismatch between expressing angles in degrees and radians. These

properties can be checked during code review (actually, such a property should

already be in the requirements review). However, a concise checking of applica-

tion specific properties in the code can be quite tricky and time-consuming. In

many applications (e.g., in guidance, navigation and control GN&C), an entire

set of physical variables with different units (e.g., position, speed, forces, etc.) are

packed into a single vector of floating point numbers, the so-called state vector.

This representation enables the use of matrix operations in the algorithms, but

obscures the physical units. For approaches to overcome that problem see e.g.,

[LPR01].

Architectural View. Whereas the language specific view focuses on properties

which must hold uniformly over the entire code, the architectural view classifies

properties according to the structure or architecture of the code. Typically, this

view distinguishes between properties for the environment (e.g., ”are we using the

right version of the operating system?”), the interface between components (e.g.,

”are all parameters passed by reference?”, or ”are all ports of the component

attached to some other component?”), and the core, the actual code within the

8



building blocks.

Computer Science View. This view, which also could be called formal meth-

ods‘ view, structures the properties according to the topics of safety properties,

resource properties, liveness properties, security properties, and functional equiv-

alence (properties) and their techniques for analysis and verification. This view

will be discussed in Section 3.3.

Tool-oriented View. This view classifies the properties according to the ca-

pabilities of the analysis tool which is used during source code analysis. Typical

tools in this area are the compiler, lint (an old C checker), tools based upon static

analysis (e.g., PolySpace [PolySpace]), and, in few cases classical verification tools

(e.g., Model Checkers). We will discuss this view in Section 3.4.

3 Selected Views in more Detail

3.1 Quality Assurance View

Reviewing properties from a quality assurance perspective includes examining the

software quality assurance results (including configuration management and the

results of verification and validation) to ensure that the product was developed

according to its specification. This review may also help detect whether or not

QA and V&V activities were performed in accordance with their respective plans.

The QA view focuses on two important aspects: Software Requirements Re-

view and Software Design Review. The following sections provide an overview of

properties to consider when reviewing both the software product and plans for

quality assurance activities.

3.1.1 Software Requirements Review

Requirements are the cornerstone of any software development endeavor because

they describe the product being constructed. They must be compatible, complete,

9



consistent, correct, feasible, modifiable, robust, traceable, understandable, and

verifiable and testable. (These properties are presented in alphabetical order

because each property is equally important.) An overview of these properties

appears below and is based on review of these references: [IEEE1028, SPH87,

SOF90, Red89, IEEE1059, HHS99, BO85, ANS10.4].

Compatibility - defined as ensuring that interface requirements enable hard-

ware and software or various software products to work together.

Completeness - necessary to make sure that all software requirements have

been identified and documented including nominal functionality, perfor-

mance, constraints, safety functioning; abnormal operating situations; tem-

poral aspects of all functions; time-critical functions and their associated

time criteria; any anticipated future changes; and normal environmental

variables for all operating modes (normal, abnormal and disturbed).

Consistency - needed to alleviate any contradictions in the requirements. Con-

sistency promotes use of standard terminology and supports ensuring the

requirements are compatible with the operational environment (both hard-

ware and software) and internal consistency exists between specified models,

algorithms, and numerical techniques.

Correctness - essential to ensure that all aspects of the software are accurate in-

cluding checking that: algorithms are supported by scientific or other appli-

cable literature; evidence exists that vendors have correctly applied appro-

priate regulations; all expected types of errors and failure modes have been

identified by the hazard analysis; functional requirements were analyzed to

check that all abnormal situations are properly covered by system functions;

adequacy of requirements for the man-machine interface; valid rationale for

each requirement; suitable justification for the design/implementation con-

straints and that requirements conform to standards.

Feasibility - needed to make sure that the design, operation, and maintenance of

software is practicable including ensuring that specified models, numerical

10



techniques and algorithms are appropriate for the problem being solved and

are based on generally accepted practice for the industry.

Modifiability - defined as making sure that requirements are organized with ad-

equate structure and cross referencing to make modification possible while

ensuring that each requirement is unique

Robustness - necessary to ensure that requirements exist for fault tolerance and

graceful degradation

Traceability - important to make sure the product is being constructed ac-

cording to the requirements. Also promotes flagging of safety functions or

computer security functions for special review.

Understandability - imperative to ensure that every requirement has only one

interpretation

Verifiability and Testability - vital to make sure that software can be checked

to see whether requirements have been fulfilled

3.1.2 Software Design Review

Software Design is the focal point of software development because without proper

design, development projects can fail to meet expectations and/or overrun bud-

gets. Software design must be consistent with and meet the requirements. Nu-

merical techniques and algorithms should be appropriate for the problem being

solved. In a similar way to the requirements, the design must be complete, con-

sistent, correct, feasible, modifiable, modular, predictable, robust, structured,

traceable, and verifiable and testable. However, the properties are defined dif-

ferently for the software design review (based on [SOF90, IEEE1028, IEEE1059,

ANS10.4]).

Completeness as it relates to software design means that the design fulfills all

the requirements and there is enough data (logic diagrams, algorithms, storage

allocation charts, etc.) to ensure design integrity. To achieve this one must

determine that algorithms and equations are adequate and accurate; interfaces are

11



described in sufficient detail; the operational environment is defined; the design

takes into account all expected situations and conditions and gracefully handles

unexpected or improper inputs and other anomalous conditions and finally that

programming standards exist and are followed.

Consistency as it relates to software design signifies that the design lacks

internal contradictions. To accomplish this the following should be used: stan-

dard terminology; a change control system to ensure the integrity of changes;

compatible interfaces; models, algorithms, and numerical techniques that are

mathematically compatible; consistent input and output formats; and identical

units of measure throughout the same computation.

Correctness as it relates to software design indicates that the design logic is

sound and the software will do what is intended in the operational environment.

Feasibility as it relates to software design means that the specified design (mod-

els, algorithms, numerical techniques) is based on generally accepted practices for

the target industry and can be implemented in operational environment with the

available resources. Modifiability as it relates to software design signifies that

software modules are organized such that changes in the requirements only re-

quire changes to a small number of modules; functions and data structures likely

to change have standardized interfaces; data structure access, database access

and I/O access from the application software occurs via the use of data access

objects (globally accessible data is not used); and functionality is partitioned into

objects to maximize the internal cohesion and to minimize coupling.

Modularity is defined as a design structured so that it comprises relatively

small, hierarchically related objects or sets of objects, each performing a par-

ticular, unique function. Predictability means that computer resources are

scheduled in a primarily deterministic and predictable manner and the design

contains objects which provide the required response to identified error condi-

tions. Robustness as it relates to software design means that all requirements

related to fault tolerance and graceful degradation are addressed in the design.

12



Structured-ness means that the design uses a logical hierarchical control struc-

ture.

Traceability as it relates to software design means a mapping and complete

coverage of all requirements and design constraints exists in the SRS; functions

outside the scope of the SRS are identified; all functions can be uniquely ref-

erenced by the code; a revision history exists documenting all modifications to

the design and the rationale for these changes; and safety and computer security

functions been flagged. Understandability as it relates to software design in-

dicates that the design is unambiguous and devoid of unnecessarily complexity.

Finally, Verifiability/Testability as it relates to software design means that

the design itself and each function in the design can be verified and tested.

3.2 Programming-language Specific View

Programming language specific view looks at properties from the language per-

spective to make sure code constructs are correctly implemented. For each pro-

gramming language, such a list usually is very lengthy and detailed. Also, differ-

ent authors also have a different view on certain issues, e.g., on the use of pointer

arithmetic or dynamically allocated memory. In this paper, we describe two the

check lists for C and C++. Lists for other languages (e.g., Java) contain similar

properties.

3.2.1 A traditional Checklist

The following list of properties for this view reads much like the table of contents

for a C/C++ book and was derived from various sources including [HN92, Bal92,

Mar91, Sho00]. For better readability, we try to group these language-specific

properties into a number of groups, like memory-related issues, control-flow is-

sues, and such. Each group has between 2 and more than 10 properties. Although

this grouping is definitely not exhaustive, we hope that it adds structure to this

view.

13



Generic properties usually talk about (strategic and tactical) comments in

the code. Strategic comments describe what a function or section of code is in-

tended to do. Tactical comments explain the purpose of a single line of code

[HN92, Sho00]. A large number of properties belong to the group, Variables,

Data Types, Memory. Here, we find properties about variable declarations,

constants, and variable initialization. Object-Oriented Constructs in C++

give raise to another group of properties (e.g., classes, inheritance, virtual func-

tions, operator overloading, etc.).

Data Usage properties include sizing of data, dynamic memory allocation

issues, (null-termination) of strings, pointers, and casting and type conversion.

Computation properties concern the calculation of values (numerical), and up-

date of variables. There are numerous properties which deal with flow control

aspects of the code. A typical example is that all case statements should have a

default-case. Also the evaluation of conditions is addressed here. For example,

by always using inclusive lower limits and exclusive upper limits, off by-one er-

rors are usually eliminated (e.g., instead of x ≥ 23 and x ≤ 42, use x ≥ 23 and

x < 43).

Argument Passing is one of the areas where many software errors are made.

Properties in this group talk about declaration of arguments (call by value, call by

reference), consistency, the construction of temporary objects, and return values.

File-oriented properties concern requirements for reading and writing a file,

security aspects as well as file name conventions. Error conditions: All probable

error conditions and exceptions must be handled gracefully so the code provides

for recovery from error conditions.

The property groups of security and multiple-threads are usually restricted

to specific kinds of programs, but they contain a number of important (and

very difficult) properties, like absence of deadlocks (correct use of mutex-locks).

Finally, miscellaneous properties concern, among others, deprecated language

features, dead code, and execution times.

14



3.2.2 A JPL Checklist

This classification of defects in software is due to P. Gluck, JPL (personal com-

munication, 2002). Here, the individual properties are grouped into proper-

ties/issues of Concurrency (race conditions, deadlocks), Misuse (e.g., array-out-of

bounds, mis-alignment of pointers), Initialization when no or an incorrect initial

value is assigned, Assignment (e.g., wrong value, type mismatch), Computation

(e.g., using a wrong equation), Undefined Operations (floating-point errors (e.g.,

tan(π/2)), arithmetic errors (e.g., divide by zero)), Omission (case/switch state-

ments without defaults), Scoping (global variables that should be local and vice

versa; static variables that should be dynamic and vice versa), Arg Mismatches

(e.g., missing arguments, too many arguments, wrong types, uninitialized argu-

ments), and Finiteness (with underflow and overflow errors).

3.3 Computer Science View

.

Figure 2: Property-based verification and functional verification [SFWW03].

While many mechanisms and tools for verifying program properties have been

15



published, especially for distributed systems, relatively little attention has been

paid to the properties themselves. The related work in this area is usually con-

cerned with computer security [Sch98]. An initial taxonomy of “useful” proper-

ties has been made in [SFWW03]. There, a first distinction is drawn between

functional and property-based verification. Functional verification is necessary to

show that a program correctly implements a high-level specification. Property-

based verification, on the other hand, ensures that the programs have desirable

features (e.g., absence of certain runtime errors), but does not show program cor-

rectness in the traditional sense. Rather, property-based verification has strong

similarities to code review; in a sense, property verification can be seen as “code

review in the extreme”.

These properties can be grouped into four categories: safety, resource-limit,

liveness, and security properties. Safety properties prevent the program from

performing illegal or nonsensical operations. Within this category, we further

subdivide into five different aspects of safety:

Memory safety properties assert that all memory accesses involving arrays

and pointers are within their assigned bounds.

Type safety properties assert that a program is “well typed” according to a

type system defined for the language. This type system may correspond to

the standard type system for the language, or may enforce additional obli-

gations, such as ensuring that all variables representing physical quantities

have correct and compatible units and dimensions [LPR01].

Numeric safety properties assert that programs will perform arithmetic cor-

rectly. Potential errors include: (1) using partial operators with arguments

outside their defined domain (e.g., division by zero), (2) performing com-

putations that yield results larger or smaller than are representable on the

computer (overflow/underflow), and (3) performing floating point opera-

tions which cause an unacceptable loss of precision.

16



Exception handling properties ensure that all exceptions that can be thrown

are actually handled.

Environment compatibility properties ensure that a program is compatible

with its target environment. Compatibility constraints specify hardware,

operating systems, and libraries necessary for safe execution. Parameter

conventions define constraints on program communication and invocation.

Resource limit properties check that the required resources (e.g., stack size)

for a computation are within some bound. Liveness/progress properties are used

to show that the program will eventually perform some required activity, or will

not be permanently blocked waiting for resources. Security properties prevent a

program from accidental or malicious tampering with the environment. Security

policies regulate access to system resources, and are often enforced by authenti-

cation procedures, which determine the identity of the program or user involved.

3.4 Tool-oriented View

This view on code review classifies properties according to the capabilities of an

analysis tool. Here, the success criteria always is: does the piece of code under

review pass the analysis of a given tool X? It is obvious that the use of tools

during code review can save a lot of time and effort; on the other hand, accuracy

and coverage of the tool as well as trust in the tool (can we trust tool X?) plays an

important role. The FAA requires tool qualification before a tool can be trusted

to analyze or verify software. The objective of tool qualification is to ensure

that the tool provides confidence at least equivalent to that of the process(es)

eliminated, reduced or automated [DO-178B].

Traditionally, a compiler is a common tool to be used during code reviews.

The most basic property of any code review obviously is: “Does the code compile

without errors?”. A more restricted version of this property (e.g., used in some

groups at JPL) is that during compilation no warning messages may show up.

17



For this test, the compiler should be set to be most restrictive with respect to

language features (e.g., -pedantic on the GNU C-compiler). Although a large

number of language-specific properties are being checked by the compiler, an

absence of warnings and errors does not say much, because, usually, it is not

known, which properties are actually being checked.

A somewhat better coverage is provided by tools like lint and its successors.

These tools are very close to compilers, however, they check for properties like

naming or portability issues. A real breakthrough in support tool for code review

are tools which are based upon static analysis (see [NNH98] for an overview).

For example, the tool PolySpace [PolySpace] combines a number of analysis al-

gorithms (for unreachable code, array bounds checks , overflows and underflows

and others) with a graphical user interface. After analysis, the source code is dis-

played in a color-coded schema: code which has definitely passed all properties is

shown in green, possible violations are shown in orange, errors in red. This tool

is being used by the European Airbus industries and other transport agencies for

safety-critical code. However, this tool has severe limitations for some kinds of

code, e.g., on multi-threaded programs and code with matrices.

More powerful tools usually require in general additional information to be

provided by the user in form of annotations (e.g., loop invariants) or a formal

specification. ESC [FRL01, DLNS98] is a static analyzer which allows to enter

annotations for tighter checking of properties. Proof-carrying code [NL98] also

relies on checking of properties (e.g., memory safety). Using a theorem prover,

these properties are formally proven for the given piece of code. In order to avoid

tampering with the code, these proofs are bundled together with the code and are

automatically checked when the program is loaded. Here, stronger checking of

properties require additional annotations [CLN+00]. AutoBayes/CC [SFWW03]

uses a similar mechanism, but all annotations are generated automatically during

synthesis of the code. Other analysis approaches based on Model Checking or

Rewriting usually require much more effort and cross the border between code

18



review and verification.

However, in all approaches the question if a tool can be trusted, remains. In

a very strict interpretation, a tool which is used for the development of safety-

critical software (e.g., compiler, analysis tool, verification tool) needs to be cer-

tified to the same level of criticality as the software itself [DO-178B]. In many

cases, however, “respectability” of a tool (has many users, has been on the market

for several years, etc.) seems to be enough, in particular, when the tool’s analysis

is combined with manual review.

4 Questionnaire

The questionnaire in Table 1 is part of a document soliciting feedback on the

relative importance of properties during the software approval or certification

process particularly for safety-critical and mission-critical aerospace software. On

a scale of 1-5, the participants were asked to rank each property for importance

and difficulty as defined below:

• Importance means how critical checking the property is to ensure human

safety and/or mission success. 5 indicates high importance and 1 means

less important.

• Difficulty is defined as how many resources it takes to check the property.

For example: a complex algorithm or mathematical function may require

special and rare expertise to ensure correctness or multi-threaded code may

require a significant amount of time and labor. 5 indicates very difficult

and 1 means less difficult.

5 Findings and Feedback

The survey consisted of a questionnaire listing properties described in Table 1 and

asking engineers and project managers to rank them based on importance and

19



Importance Difficulty Property
5 3 Divide by zero
5 3 Array index overrun
5 5 Mathematical functions sin, cos, tanh
5 1 Use of un-initialized variables or constants
3 3 No unused variables or constants
4 2 All variables explicitly declared
5 5 Proper synchronization in multi-threaded execution
4 4 Incorrect computation sequence
5 3 Loops are executed the correct number of times
5 3 Each loop terminates
3 2 All possible loop fall-throughs correct
4 3 Priority rules and brackets in arithmetic expression eval-

uation used as required to achieve desired results
5 5 Resource contention
5 2 Exception handling
5 5 The design implemented completely and correctly
4 2 No missing or extraneous functions.
5 1 Error messages and return codes used
5 1 Good code comments

Table 1: Sample Questionnaire

difficulty. Even though NASA engineers generally focus on innovative designs

while coding efforts are outsourced, survey results indicated that safety critical

teams at Dryden Flight Research Center found the properties described in this

paper and listed in the complete questionnaire (too lengthy to publish in toto)

to be a comprehensive list noting that proper synchronization in multi-threaded

execution was especially difficult to check. They also strongly advocated the

need for good comments to ensure consistent flow of information among teams

over the life of the project. Mission-critical teams at JPL also found the above

described properties comprehensive and adopted them as the foundation for the

Mars Science Laboratory verification and validation effort. They chose to restate

the properties as errors believing this format more clearly communicates to review

boards the importance of finding and fixing or mitigating anomalies.

20



6 Discussion: Trustworthy Code Review

Key facets of a trustworthy code review include trust and thoroughness. In order

for code to be certified, reviewers must believe, based on the facts presented,

that the development team has the expertise and experience to complete the task

and that they have thoroughly investigated every software component critical to

human safety or mission success. The comprehensive list of properties presented

in this paper provides a technical guideline based on lessons learned at NASA and

the aerospace industry for reviewers to use, in conjunction with consideration of

the reputation of the development team, to accomplish a trustworthy code review.

Since the process of code review has to live in close vicinity with code devel-

opment, there is a strong human aspect there: if code reviews are to be trusted,

they should be used to provide positive feed-back to the developers and program-

mers and, “they [results of code inspection] should not under any circumstances

be used for programmer’s performance appraisal” [Fag76].

References

[ANS10.4] ANSI/ANS-10.4 Guidelines for the Verification and Validation of sci-

entific and engineering Computer Programs for the Nuclear Industry,

1987.

[Bal92] An abbreviated C++ Code Inspection Checklist.

http://www2.ics.hawaii.edu/∼johnson/FTR/Bib/Baldwin92.html, 1992.

[BO85] N. Birrell and M. Ould. A Practical Handbook for Software Develop-

ment. Cambridge University Press, 1985.

[CLN+00] C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and K. Cline. A

certifying compiler for Java. ACM SIGPLAN Notices, 35(5):95–107,

2000.

[DLNS98] D. Detlefs, K. R. Leino, G. Nelson, and J. Saxe. Extended static

checking. Technical Report 159, SRC Research Report, 1998.

21



[DO-178B] DO-178B: Software considerations in airborne systems and equip-

ment certification. http://www.rtca.org, 1992.

[Fag76] M. Fagan. Design and code inspections to reduce errors in program

development. IBM Systems Journal, 15:182–211, 1976.

[FRL01] C. Flanagan, K. Rustan, and M. Leino. Houdini, an annotation as-

sistant for ESC/Java. In Proc. Formal Methods Europe 2001 (FME),

volume 2021 of LNCS, pages 500–517. Springer, 2001.

[SPH87] STARTS Purchasers Group. The STARTS Purchasers’ Handbook,

1987.

[HHS99] Reviewer guidance for computer controlled devices undergoing 510(k)

review, Center for Devices and Radiological Health, FDA.

[HN92] M. Henricson and E. Nyquist. Programming in C++: Rules and Rec-

ommendations. http://www.doc.ic.ac.uk/lab/cplus/c++.rules/, 1992.

[IEEE610] IEEE 610.12: IEEE Standard Glossary of Software Engineering Ter-

minology, IEEE, 1990.

[IEEE1059] IEEEP STD 1059: IEEE Guide for Software Verification and Vali-

dation Plans (draft). IEEE, 1991.

[IEEE1028] IEEE STD 1028-1997: IEEE Standard for Software Reviews and

Audits. IEEE, 1997.

[LPR01] M. Lowry, T. Pressburger, and G. Rosu. Certifying domain-specific

Policies. In Proc. ASE 2001, pages 118–125. IEEE, 2001.

[Mar91] B. Marick. A question catalog for code inspections, 1991.

[Neu95] P. G. Neumann. Computer Related Risks. ACM Press, 1995.

[NL98] G. C. Necula and P. Lee. Efficient representation and validation of

logical proofs. In Proc. LICS’98, pages 93–104. IEEE, 1998.

[NNH98] F. Nielson, H. Nielson, and C. Hankin. Principles of Program Anal-

ysis. Springer, 1998.

[PolySpace] Polyspace technologies. http://www.polyspace.com.

22



[RBB02] I. Rus, V. Basili, and B. Boehm. Empirical evaluation of techniques

and methods used for achieving and assessing software high depend-

ability. In Proc. DSN Workshop on Dependability Benchmarking,

2002.

[Red89] F. J. Redmill, editor. Dependability of Critical Computer Systems 2;

The European Workshop on Industrial Computer Systems Technical

Committee 7 (EWICS TC7). Elsevier, 1989.

[Sch98] Fred B. Schneider. Enforceable security policies. Computer Science

Technical Report TR98-1644, Cornell University, 1998.

[SFWW03] J. Schumann, B. Fischer, M. Whalen, and J. Whittle. Certification

support for automatically generated programs. In In Proc. HICSS-

36. IEEE, 2003.

[Sho00] A. Shostack. Security Code Review Guidelines.

http://www.homeport.org/∼adam/review.html, 2000.

[SOF90] Standard for Software Engineering of Safety Critical Software, 1990.

[WPI95] D. R. Wallace, W. W. Peng, and L. M. Ippolito. NISTIR

4909: Software quality assurance: Documentation and reviews.

http://hissa.ncsl.nist.gov/publications/nistir4909/, 1995.

23


